CHAPTER 8

BAYESIANISM

JAMES M. JOYCE

BAYEsIANISM provides a unified theory of epistemic and practical rationality based
on the principle of mathematical expectation.! In its epistemic guise it requires
believers to obey the laws of probability. In its practical guise it asks agents to
maximize subjective expected utility (see also Dreier, chap. 9, and Bicchieri, chap.
10, this volume).

This essay will be concerned primarily with Bayesian epistemology. Its first
section defends the view that beliefs come in varying grades of strength. Section
2 explores the Bayesian requirement of probabilistic consistency for graded beliefs.
Section 3 explicates Bayesian confirmation theory. Section 4 discusses the thesis
that rational belief change proceeds via conditioning. Section 5 addresses the charge
that Bayesianism engenders an untenable subjectivism.

1. GRADED BELIEFS AND CONDITIONAL
BELIEES

Bayesians maintain that any adequate epistemology must recognize that beliefs
come in varying gradations of strength. They seek to replace the categorical no-
tion of belief as an all-or-nothing attitude of accepting a proposition as true
with a graded conception of belief as level of confidence. In general, a person’s
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level of confidence in a proposition X will correspond to the extent to which
she is disposed to presuppose X’s truth in her theoretical and practical rea-
soning.>

There are two compelling reasons for thinking that opiniohs vary in strength.
First, this is needed to make sense of decision making. To explain why Smith will
bet on Stewball at 4-to-1 odds but not at even odds, we must suppose that she is
not sure that Stewball will lose but is more confident that he will lose than that
he will win. Second, since evidence comes in a wide variety of types and strengths,
a person will be able to proportion her beliefs to her evidence only if her beliefs
come in gradations. Someone who wants to know whether a coin will land heads
when tossed might have as evidence any proposition of the form “the coin was
fairly tossed a thousand times and » heads came up.” Each value of #n calls for a
different doxastic attitude.

People also have graded conditional beliefs that express their confidence in
the truth of propositions on the supposition that other propositions are facts. If a
person has determinate unconditional beliefs in Y and X & Y, and is not certain
of —Y, then her belief in X conditional on Y will be a function of her uncondi-
tional beliefs in Y and X & Y. That said, a person may hold a definite belief about
X conditional on Y even when she has no determinate unconditional beliefs for
X & Y and Y, or when she is certain that Y does not obtain. Conditional beliefs
are best seen as sui generis judgments that cannot be reduced to unconditional
beliefs.?

A crucial challenge for Bayesians is to explain how strengths of beliefs can be
measured. It is often said that Bayesianism is committed to the existence of sharp,
numerical degrees of belief. This requires each believer to have a confidence measure
that, for each proposition X and condition Y, specifies a number ¢,(X) that gauges
her level of confidence in X conditional on Y. For fixed Y, c/(®) captures the
person’s degrees of belief on the supposition Y, and her unconditional beliefs are
given by c(®) = c,(®) where T is any truth of logic. By convention, ¢(X) =1
indicates complete certainty in X’s truth, while ¢(X) = o indicates complete in-
credulity.

The idea that people have numerically sharp degrees of belief has been widely
criticized both for psychological implausibility and because it requires people to
hold opinions far more definite than their evidence warrants.* As a result, most
Bayesians now grant that few graded beliefs can be precisely quantified. Instead,
beliefs are represented variously by interval-valued probabilities, convex sets of
confidence measures, or confidence orderings. The most general approach is to
characterize a person’s opinions using a system of descriptive constraints that
might include any of the following sorts of statements:

* She is more confident in X than in Y.
* She believes Z to at least degree ¥ but at most degree %..
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¢ She believes X conditional on Y more strongly than she believes Z condi-
tional on W.

The person’s graded beliefs can then be represented by the set Con of all confi-
dence measures that satisfy the constraints. For this system, Con contains all
measures: ¢(X) > c(Y); 3/4 > (Z) > 1/3; ¢,(X) > c,(Z). In ideal cases the con-
straints will be so detailed that Con contains a single measure, but it will more
commonly contain many measures. Facts about the person’s opinions are given
by properties that all Con’s elements share, for example, she can be said to believe
X to degree x only when ¢(X) = x for every c € Con.
We can now state the first core tenet of Bayesian epistemology.

Thesis of Graded Belief. Any adequate epistemology must recognize that
opinions come in varying gradations of strength. A person’s graded beliefs
can be represented using a set Con of confidence measures. Facts about her
beliefs correspond to properties shared by all functions in Con.

2. THE REQUIREMENT OF PROBABILISTIC
CONSISTENCY

The second core tenet of Bayesian epistemology requires that rational beliefs be
consistent with the laws of probability. A probability function P assigns non-
negative real numbers to propositions in such a way that

Normalization. P(T) = 1 for T any truth of logic.

Additivitys P(X v Y) = P(X) + P(Y) if X and Y are logically incompatible.

A conditional probability assigns numbers to pairs of propositions X/Y in such a
way that

Probability. P(®/Y) is a probability for every Y with P(Y) > o.
Conditional Normalization. P(Y/Y) = 1.

Conditioning. P(X/Y & Z) X P(Y/Z) = P(X & Y/Z).5
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Hereafter, “the laws of probability” will denote these five requirements.
Here are two useful consequences of these laws:

Logical Consequence. If X entails Y, then P(Y) = P(X).
Bayes’s Theorem.” P(X/Y) = [P(X) + P(Y)] X P(Y/X).

Logical Consequence ensures that probabilistic reasoning respects deductive logic.
Bayes’s Theorem relates the “direct” probability of X conditional on Y to the ratio
of the unconditional probabilities of X and Y, and the so-called inverse probability
(or “likelihood™) of Y conditional on X.

Here is the basic Bayesian requirement of epistemic rationality:

Probabilistic Consistency. A rational subject’s beliefs must conform to the
laws of probability in the sense that at least one confidence measure that
represents her beliefs must be a probability.

In other words, there must be a ¢ in Con and a conditional probability such that
c(X) = P(X/Y) whenever P(X/Y) is defined.

The most common Bayesian rationale given for probabilistic consistency is
the famous Dutch Book Argument (DBA) of Frank Ramsey (1931) and Bruno de
Finetti ([1937] 1964). This argument purports to show that anyone whose beliefs
violate the laws of probability is practically irrational. In broadest outline the
reasoning runs thus:

Coherence. A practically rational agent will never freely perform any action
when another act is certain to leave her better off in all possible circum-
stances.

Belief/Desire Psychology. A practically rational agent will always act in ways
that she estimates will best satisfy her desires.

The EU-Thesis. A practically rational agent will estimate that an act best
satisfies her desires if and only if that act maximizes her subjective expected
utility.

Dutch Book Theorem. An agent who tries to maximize her subjective ex-
pected utility using beliefs that violate the laws of probability will freely
perform an act that is sure to leave her worse off than some alternative act
would in all circumstances.
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Therefore, it is practically irrational to hold beliefs that violate the laws of
probability.

While the DBA’s first premise has generated little controversy, its second is
often dismissed as bad psychology. A vast body of experimental evidence shows
that, in addition to beliefs and desires, actions are affected by emotions, habits,
decision-making heuristics, and judgmental biases.® This is all undeniable, but
those who see it as a problem for the DBA are confused about the Bayesian
enterprise. Bayesians have always made it clear that they are offering a normative
theory of rational behavior, not an empirical theory of actual behavior.” Emotions,
habits, and so on do cause actions, but the DBA does not rely on the belief/desire
model as a causal theory of action. Rather, the model serves to determine which
actions an agent has sound reasons to perform. Premise 2 makes no claims what-
soever about the psychological mechanisms that prompt actions. It says, rather,
that what makes an act rational is that it bears the right relationship to the actor’s
beliefs and desires. When read this way, premise 2 has nothing to fear from
empirical psychology.!

The EU-thesis is the most controversial premise of the DBA. As Ramsey (1931,
174) expressed it, “I suggest that we introduce as a law of psychology that behavior
is governed by . . . mathematical expectation . . . If X is a proposition about which
[an agent] is doubtful, any goods or bads for whose realization X is in his view
a necessary and sufficient condition enter into his calculations multiplied by the
same fraction, which is called the degree of his belief in X.” We will discuss the
general EU-thesis shortly, but the DBA requires only a special case. Assume that:
(a) the agent desires only money; (b) her desire for money does not vary with
changes in her fortune; and (c) she is not averse to risk or uncertainty. The key
insight of the DBA is that, if we ignore the fact that offering someone a bet on
X can alter her opinions, the EU-thesis entails that a person satisfying (a)—(c) will
reveal the strengths of her beliefs in her betting behavior.

Suppose we offer our agent a wager W = [$a if X, $b else] in which she is
certain that she will get $a if X is true and $b if X is false, and that X’s truth does
not depend causally on W. The EU-thesis then entails that the agent’s level of
confidence in X will be revealed by the monetary value she puts on W. Her fair
price for W is that sum of money $f at which she is indifferent between receiving
a payment of $f or having W go into effect. When the agent has a definite degree
of belief ¢(X) for X she will value W by its expected payoff, so f = Exp(W) = ¢(X)
X a + (1-¢(X)) X b. Her fair price for W is then related to her degree of belief
in X by the equation ¢(X) = (f~b) + (a=b)."! So, if she is indifferent between
$63.81 and a bet that pays $100 if it rains and $o if not, then she is confident to
degree 0.6381 that it will rain.”?

Once this connection between degrees of belief and fair prices is granted, the
DBA becomes an exercise in mathematics. Given (a)—(c), the EU-thesis entails
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that the agent will choose to swap any set of wagers for the sum of their fair
prices, or swap any set of fair prices for its associated sequence of wagers. This
“package principle” entails that a person who sets prices $0.25, $0.25, and $0.6
on W, = [$1if X, $o else], W, = [$1if Y, $0 else] and W, ,, = [$1if X V Y,
$o else}, respectively, will exchange a portfolio containing $0.6 and the first two
wagers for one containing $0.5 and the third. When X and Y are logically incom-
patible she buys nothing with her dime since the combination of Wy and Wy is
identical, in terms of payoffs, to Wy, ;. When an agent takes a self-defeating
action of this sort, she is said to have made “Dutch book” against herself. Co-
herence entails that doing so is irrational.

The Dutch Book Theorem shows that susceptibility to Dutch books is the
penalty for transgressing the laws of probability.

Dutch Book Theorem. Imagine an EU-maximizer who satisfies (a)-(c) and
has a precise degree of belief for every proposition she considers. If these
beliefs violate the laws of probability, then she will make Dutch Book
against herself.

One proves this by showing that someone who violates a given law of prob-
ability is thereby committed to buying and selling a series of wagers whose net
effect will be to cost her money come what may. For example, if one violated
Additivity by having degrees of belief 0.25, 0.25, and 0.6 for X, ¥, and X v Y,
respectively, then one will be susceptible to the Dutch book just described. All
other violations of the laws of probability have similar “Dutch book” justifications.

The DBA has three shortcomings. It assumes an agent who meets conditions
(a)—(c), who sets a fair price on every wager she considers, and who maximizes
expected utility. The first two restrictions are unrealistic, and the claim that prac-
tical rationality requires EU-maximization is controversial. An adequate justifi-
cation of Probabilistic Consistency must both relax the first two restrictions and
provide an independent justification for EU-maximization.

Fair prices can be avoided if rational agents are permitted to have incomplete
or imprecise preferences that are extendible to completely precise preferences that
avoid Dutch books.™ If one accepts this requirement of coherent extendibility, then
for any rational agent there will be at least one, but usually many, complete sets
of coherent fair prices that are consistent with her preferences. By the Dutch Book
Theorem, each such system determines a probability function, and so the person’s
Con set will contain at least one probability.- '

While many Bayesians find this solution appealing, it would be better to avoid
the detour through coherent extendibility altogether by showing that agents with
imprecise or incomplete beliefs that violate the laws of probability are susceptible
to Dutch books outright. While no general proof of this sort exists, one can go
a long way toward the goal in some special cases. Suppose belief strengths can be
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characterized comparatively by a relation X .>. Y that holds when the agent is at
least as confident in X as in Y. This relation need not be complete: neither X .>.
Y nor Y .>. X needs to hold since the agent might have no determinate view
about the relative likelihood X and Y. Even under these weak conditions, prob-
abilistic inconsistency leaves the agent susceptible to Dutch book.” This result
can be generalized to apply to comparative conditional beliefs and to beliefs with
“interval-valued” characterizations. Hence, under broad conditions, expected util-
ity maximizers with probabilistically inconsistent beliefs, even imprecise ones, are
susceptible to Dutch books.

To relax (a)—(c) and defend the EU-thesis, we must leave the DBA behind.
What is needed is a representation theorem that justifies probabilistic consistency
and expected utility maximization simultaneously, but without restricting the con-
tent of the agent’s desires.® A number of such theorems can be found in the
literature, but the one due to Leonard Savage ([1954] 1972) has attained the status
of a “standard model.” Savage imagines an agent who uses her beliefs about the
world’s possible states and her desires for consequences to form preferences among
what he calls acts.” Acts, states, and consequences are individuated so that (i)
each act/state pair produces a unique consequence that settles every issue the agent
cares about, and (ii) she is convinced that her behavior will make no causal
difference to which state obtains. The agent is assumed to have a preference ranking
over acts. For any acts A and B, she might strictly prefer A to B, be indifferent
between them, or strictly prefer B to A.

In Savage’s framework, an expected utility is a function

ExpP,u(A) = ZSeStahzs P(S) X M(A, S)

where A is an act, P is a probability over states, and u is a utility function. u(A,
S) measures the degree to which the agent’s desires will be satisfied by the con-
sequence produced by A and S. Exp;,(A) is her estimate of the degree to which
A is likely to produce consequences that satisfy her. Within Savage’s framework,
we can state the basic Bayesian requirement of practical rationality as follows:

EU-coherence. There must be at least one probability P defined on states
and one utility u for consequences that represent the agent’s preferences in
the sense that, for any acts A and B, she strictly (weakly) prefers A to B
only if Exps,(A) is greater than (as great as) Exp, ,(B).

To justify EU-coherence as the standard of practical reason, Savage imposes a
system of axiomatic constraints on preferences and proves that satisfaction of
these constraints guarantees the existence of the required P and u. Here are in-
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formal analogues of Savage’s main axioms (where A, B, C are acts, and Xand Y
are disjunctions of states)

Trichotomy. The agent strictly prefers A to B, strictly prefers B to A, or is
indifferent between them.

Transitivity. If the agent (strictly or weakly) prefers A to B and B to C, then
she also prefers A to C (see also Sorensen, chap. 14, this volume).

“Sure Thing” Principle. If A and B produce the same consequences in every
state consistent with —X, then the agent’s preference between the two acts
depends only on their consequences when X obtains (see also Dreier, chap.
9, and Sorensen, chap. 14, this volume).

Wagers. For any consequences O, and O,, and any event X, there is an-act
[0, if X, O, else] that produces O, in any state that entails X and O, in any
state that entails —X.

Savage’s P4. If the agent prefers [O, if X, O, else] to [O, if Y, O, else] when
O, is more desirable than O,, then she will also prefer [O,* if X, O,* else]
to [O,* if Y, O,* else] for any other outcomes such that O,* is more desira-
ble than O,*.

Savage showed that these axioms, along with a few others, guarantee the existence
of a unique probability P and a utility », unique up to the arbitrary choice of a
unit and zero-point, whose associated expectation represents the agent’s prefer-
ences.'®

Many Bayesians use this result to justify probabilistic consistency. P4 is the
lynchpin of their case. Savage uses P4 to “define” what it means for the agent to
be more confident in X than in Y:

A practically rational agent believes X more strongly than she believes Y if
and only if she strictly prefers [O, if X, O, else] to [O, if Y, O, else] for
some (hence any, by P4) outcomes with O, more desirable than O,.

Savage treated this as a “definition” because, like many social scientists of his day,
he believed that legitimate objects of scientific study must be operationally de-
fined. Strengths of beliefs are defined in terms of preferences, which are opera-
tionally defined in terms of overt choices. There are many well-known problems
with this outmoded behaviorist methodology, but we need not endorse it to rec-
ognize that Savage’s principle correctly captures the relationship between prefer-
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ences and belief strengths (albeit not as a matter of definition). If O, is preferred
to O,, then the agent has a good reason for preferring [O, if X, O, else] to [O, if
Y, O, else] exactly if she is more confident in X than in Y. Given this, P4 entails
that the agent’s beliefs are represented by the probability in any (P, u) pair that
represents her preferences. Probabilistic Consistency is thus derived as a conse-
quence of the theory of practical rationality embodied in Savage’s axioms.

There is a vast literature dedicated to determining whether or not these axi-
oms really are requirements of practical rationality. Savage’s defenders seek to
show that violating them leads agents to choose means that are necessarily insuf-
ficient for their ends. Critics try to refute these arguments, typically by arguing
that they distort rational attitudes toward risk or uncertainty. The “Sure Thing”
Principle has been especially controversial, but Transitivity has been questioned
as well. We cannot hope to even scratch the surface of these issues here and will
leave interested readers to consult the literature.'

There is, however, a broader worry about both the DBA and the represen-
tation theorem approaches. These arguments can show only that it is practically
irrational to violate the laws of probability. Some critics have wondered why this
should indicate anything at all about the epistemological status of probabilistically
inconsistent beliefs. Ralph Kennedy and Charles Chihara (1979, 30) put the point
concisely: “The factors that are supposed to make it irrational to have a [proba-
bilistically inconsistent] set of beliefs . . . are irrelevant, epistemologically, to the
truth of the propositions in question. The fact (if it is a fact) that one will be
bound to lose money unless one’s degrees of belief [obey the laws of probability]
just isn’t epistemologically relevant to the truth of those beliefs.”

In responding to such worries many Bayesians invoke a form of pragmatism.
Ramsey writes that the strength of a belief “is a causal property of it, which we
can express vaguely as the extent to which we are prepared to act on it” (1931,
169). De Finetti thinks it “trivial and obvious ... that the degree of probability
attributed by an individual to a given event is revealed by the conditions under
which he would be disposed to bet on that event” ([1937] 1964, 101). Savage, as
we saw, simply defines the strengths of beliefs in terms of characteristic patterns
of preferences for actions. Anybody who conceives of beliefs this way, as mere
causes for actions, will resist the suggestion that there is any specifically “episte-
mological” way of evaluating them. There is nothing more to the rationality of
beliefs, they will say, than their propensity to produce practically rational actions.

Other Bayesians are loath to endorse such an uncompromising pragmatism.
In addition to their role in producing actions, beliefs respond to evidence, serve
as premises in theoretical reasoning, and are judged in terms of the truth or falsity
of their constituent propositions. Given all this, it seems a mistake to tie the
rationality of beliefs too closely to that of actions or preferences. Some who feel
this way adopt a “depragmatizing” strategy and reinterpret the DBA and repre-
sentation theorems so as to expose the specifically epistemic costs of probabilistic
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inconsistency. Others offer new sorts of arguments that directly bring out the
epistemic shortcomings of probabilistically inconsistent beliefs.

An early “depragmatizer,” Brian Skyrms, writes that “what is basic [in the
DBA or representation theorems] is the consistency condition that you evaluate
a betting arrangement independently of how it is described (e.g., as a bet on X v
Y or as a system of bets consisting of a bet on X and a bet on Y) ... The cunning
bettor is simply a dramatic device—the Dutch book a striking corollary—to em-
phasize the underlying issue of coherence” (1984a, 21—22).2! In other words, the
cognitive flaw associated with probabilistic inconsistency is a susceptibility to what
psychologists call framing effects, in which a single option is evaluated differently
when presented under different guises.? To illustrate, suppose that a person is
both more confident in X than in Y and more confident in Y v Z than in X v Z
where Z is incompatible with X and Y. Savage’s axioms entail that, for any out-
comes with O, strictly preferred to O,, the agent will prefer Package-A = {[O, if
X, O, else], [0, if Z, O, else]} to Package-B = {[O, if Y, O, else], [O, if Z, O,
else]} but prefer Wager-B = [0, if Y v Z, O, else] to Wager-A = [O, if X v Z,
O, else]. This is inconsistent because the packages are just the corresponding
wagers redescribed.

While this diagnosis is correct as far as it goes, it does not reveal what is
wrong with the agent’s beliefs, since the inconsistency holds among preferences.”
Some depragmatizers hope to go further by showing that inconsistent preferences
are invariably accompanied by inconsistent beliefs, specifically by inconsistent be-
liefs about the values of prospects.” In an attempt to “depragmatize” the DBA,
Colin Howson and Peter Urbach define a person’s degree of belief in X as the
betting odds she believes to be fair, and go on to emphasize that “believing certain
odds fair does not in any way imply that you will accept bets at those odds or
even at any greater odds. To believe odds to be fair is to make an intellectual
judgment, not . . . to possess a disposition to accept particular bets when they are
offered” (1989, 57). Thus, someone who strictly (weakly) prefers A to B is thereby
committed to the belief that it would be advantageous (fair) to have A rather
than B. By the same token, a person who is more confident in X than in Y is
committed to believing that Package-A will be more advantageous to her than
Package-B. Given this, Howson and Urbach argue the DBA shows that probabil-
istically inconsistent beliefs lead to logically inconsistent beliefs about the values
of wagers. For example, an agent who is more confident of X than Y and more
confident of Y v Z than X v Z will inconsistently believe that it is in her interest
both to have Package-A over Package-B and to have Wager-B over Wager-A.»

Unfortunately, the Howson/Urbach approach is still infected with pragma-
tism. There is an inferential gap between the probabilistic inconsistency of beliefs
about nonevaluative propositions and the logical inconsistency of value judgments
about prospects involving these propositions.? When beliefs justify value judg-
ments, the sort of “justification” at work is not purely epistemic; it invariably
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hinges on substantive principles of practical rationality. For example, the fact that
the agent is more confident in X than in Y only “justifies” the judgment that
Package-A is more desirable than Package-B if Savage’s Sure Thing Principle is
assumed. In reality, one cannot deduce inconsistencies in an agent’s beliefs from
inconsistencies in her preferences since any such inference will be mediated by
the (nonlogical) principles of practical reasoning that relate beliefs to preferences.
Whatever defects there are in the agent’s beliefs are still, at root, pragmatic.

A truly epistemic rationale for Probabilistic Consistency must explain how
violations of the laws of probabilities impede the accuracy of beliefs. Bas van
Fraassen and Abner Shimony have argued, in different ways, that violating these
laws can lead people to make poorly calibrated estimates of relative frequency.”’
Additivity requires a person who assigns a degree of belief to each proposition in
aset X = {X, X, ..., X,} to estimate the frequency of truths in X as [¢(X,) +
X)) +...+ cX))] = n One evaluates the accuracy of such estimates using a
quantity called the calibration index.” For each 1 > a > o, let X, be the set of
propositions to which ¢ assigns value 4, let n, be the cardinality of X, and let
o(X,) be the proportion of truths in X.. Then s calibration index is given by

Cal(c) = 3, n, X ((X,) — a)

¢ is well-calibrated to the extent that it minimizes this quantity. When c is perfectly
calibrated, half the propositions assigned probability 1/2 are true, two-fifths of
those assigned probability 2/5 are true, and so on. Van Fraassen and Shimony
cach use the calibration index to measure the “fit” between beliefs and the world,
and each shows that (under fairly restrictive conditions) beliefs that violate the
laws of probability are necessarily less well calibrated than they could otherwise
be. These are interesting results, but they do not justify probabilistic consistency
because calibration simply is not a reasonable measure of the “fit” between graded
beliefs and the world. To state just one problem, Joe can be better calibrated than
Jane even though Jane always believes truths more strongly, and falsehoods less
strongly, than Joe does.”

Another approach, pursued in Joyce 1998, relates probabilistic consistency
directly to the accuracy of graded beliefs. The strategy here involves laying down
a set of axiomatic constraints that any reasonable gauge of accuracy for confidence
measures should satisfy, and then showing that probabilistically inconsistent mea-
sures are always less accurate than they need to be. The two most important
constraints are

Normality. If ¢’s values are always at least as close to the actual truth-values
of propositions as ¢*’s are, then c is at least as accurate as c*.

Convexity. If ¢ and ¢* are equally accurate (and not identical), then their
even mixture [¢ + ¢*] + 2 is strictly more accurate than either.
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Normality connects accuracy to truth. Convexity penalizes overconfidence (so that,
e.g., believing X and —X both to degree ¥, is better than believing them both to
degree 1). On the basis of these axioms, and a few others, it can be proved that
if ¢ violates the laws of probability then there is a probability function ¢* that is
strictly more accurate than ¢ under every logically consistent assignment of truth-
values to propositions. To the extent that one accepts the axioms,” this shows that
the demand for probabilistic consistency follows from the purely epistemic re-
quirement to hold beliefs that accurately represent the world.

3. BAYESIAN CONFIRMATION THEORY

The most influential aspect of Bayesian epistemology is its theory of evidential
support. Bayesians reject the idea that evidential relations can be characterized in
an objective, belief-independent manner; evidence is always relativized to a person
and her opinions. On this view, a person’s total, nonincremental evidence regarding
a hypothesis H is directly reflected in her level of confidence in H.*' This evidence
derives from two sources: (a) the person’s own subjective “prior” opinions about
the intuitive plausibility of H and other propositions, and (b) any new knowledge
she has acquired via learning. She is more confident in H than in —H exactly if
the totality of her prior and learned evidence tells more strongly in favor of H
than against it. Similarly, her level of confidence in H conditional on E reflects
her total evidence for H when E added to her stock of knowledge. The disparity
between her unconditional level of confidence in H and her level of confidence
in H given E then captures the amount of additional evidence that E provides for

H. This justifies the following qualitative account of incremental evidential sup-
port:

E confirms (disconfirms, is irrelevant to) H for a person whose beliefs are
represented by the measures in Con if and only if c(H/E) exceeds (is ex-
ceeded by, equal to) c(H) for every c € Con.

Bayesians use this analysis to provide explanations of important truisms about
evidential relationships and facts about scientific practice.>> Here are two examples
that both follow from Bayes’s Theorem:

Prediction Principle. If a person is more confident in E conditional on H
than conditional on —H, then E confirms H for her.
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Surprise Principle. If a person is equally confident in E and E* conditional
on H, then E confirms H more strongly for her than E* does (or discon-
firms it less strongly) if and only if she is less confident of E than of E*.

The prediction principle provides a Bayesian rationale for the hypothetico-
deductive model of confirmation. On the H-D model, hypotheses are incrementally
confirmed by any evidence statements they entail. Bayesians are able to make
sense of this insight even though they reject the idea that evidential relations can
be characterized independent of belief. When H entails E, the Prediction Principle
entails that E (incrementally) confirms H for anyone who does not already reject
H or accept E. Consequently, the results of experiments that it the H-D paradigm
will be deemed evidentially relevant by anyone who has not yet made up his mind
about the data or the hypothesis. While the degree of confirmation will vary across
people, every rational person will agree that the hypothesis is supported by the
data to some degree.

The surprise principle explains why unexpected evidence seems to have more
“confirming potential” than evidence that is already known. On the Bayesian view,
a person’s appraisal of E’s evidential import for H varies inversely with her con-
fidence in E when c(E/H) is held fixed. In particular, if H entails E, so that c(E/
H) = 1, then E confirms H more strongly the less likely it is.

Some see this as a double-edged sword. According to Clark Glymour (1980,
chap. 3), it entails that “old” evidence about which a person is already certain (or
very highly confident) cannot provide any (much) support for any hypothesis.
When ¢(E) is close to 1, C(H) will be close to c(H/E), and this detracts from E’s
confirming power. As Glymour emphasizes, however, many splendid pieces of
scientific reasoning involve adducing “old” evidence to support novel hypotheses.
Many aspects of this Problem of Old Evidence pose challenges for Bayesianism,
but the most serious is to explain how a person who is certain or almost certain
of E, and is fully aware of all the relevant logical relationships between H and E,
can see E as evidence for H.*

Such an explanation can be given once we realize that the Bayesian tent has
room for more than one notion of evidential support. The point is easiest to see
when put in quantitative terms. Many Bayesians use the difference measure d(H,
E) = c¢(H/E)-c(H) to capture the degree to which E incrementally supports H.
Since this goes to zero as ¢(E) approaches one the Problem of Old Evidence clearly

arises for d. There is, however, a closely related function, d*(H, E) = c¢(H/E)—c(H/

—E), that lacks this undesirable feature: as long as c(H/E) and c(H/—E) are defined,
¢(E) can range from zero to one without affecting the value of d*(H, E). The
suggestion, made in Joyce 1999 and Christensen 1999, is that d* captures the sense
of confirmation at issue in old evidence cases. It compares total evidence that a
person will have for H if E is added to her stock of knowledge with the total
evidence she will have for H if —E is added. Since this comparison does not depend
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on her level of confidence in E, it can remain fixed even as her beliefs about E
and H change. Thus, a person who is certain of E, and who is fully aware of all
the relevant logical relationships between H and E, can still see E as evidence for
H in the sense of regarding H as more likely if E is true than if E is false.

It must be emphasized that d* is not being proposed as a replacement for d.*
Rather, d remains the basic measure of incremental confirmation, and d* captures
one of its components. Writing d(H, E) = ¢(—E) X d*(H, E) makes it clear that
d* is a part of d that does not depend on E’s prior probability. There are many
questions about confirmation that d can be used to answer, but d* is useful for
answering others. We should use d when we want to say how much E supports
H relative to a common background of knowledge concerning E. d* is useful when
we are talking about E’s confirming power across states of knowledge about E in
which ¢(H/E) and c¢(H/—E) are fixed. (This turns out to be a fairly common case.)
Hence, there is no conflict between d and d*: they measure different things and
are used to answer different questions.

There are other measures of confirmation as well. The most important is the
likelihood ratio c(E/H) + c(E/—H), which expresses the disparity between c(H/E)
and c(H) as the ratio of H’s odds given E to its unconditional odds.>* This measure
is useful when there is consensus about how strongly H and —H predict E, but
none about the probabilities of H and E. Here too it is best to be ecumenical.
There is no single right way to measure confirmation; different measures are
suited for different pragmatic purposes. To tell the whole story about a person’s
evidential situation vis-a-vis H and E, we would need to describe her entire sys-
tem of beliefs. Fortunately, the whole story rarely interests us. We use different
senses and measures of incremental confirmation to illuminate those parts of it
that do. i

That said, it is possible to isolate an element that is common to any theory
of evidence that deserves the name Bayesian. The core tenet of any such theory
is the observation, encapsulated in Bayes’s Theorem and the Prediction Principle,
that E’ confirming potential relative to H is enhanced to the extent that H makes E
more probable. It follows from this that the ability of evidence to discriminate
among competing hypotheses is limited by the relative degree to which these
hypotheses probabilify the evidence. Imagine a believer who has more total evi-
dence for H than for H*, so that ¢(H) > c(H*). What would it take to reverse
this situation by adding E to her knowledge, so that c(H*/E) > c(H/E)? Bayes’s
Theorem tells us that E can reverse the “balance of evidence” only if H* predicts
E’s truth more strongly than H’s does. This leads to the following:

Discrimination Principle. If a person initially has more total evidence for H
than for H*, and if H predicts E at least as strongly as H* does, then the
person will have more total evidence for H than for H* after E is added to
her stock of knowledge.
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Note that E can never reverse the balance of total evidence between H and H*
when both hypotheses entail E. This observation will play a central role in our
discussion of the Bayesians’ account of learning.

Like the rest of Bayesian confirmation theory, the Discrimination Principle
rests on the assumption that a person’s total evidence is a combination of her
“prior” views about the intuitive plausibility of hypotheses and information she
has acquired via learning. So, to fully understand Bayesianism, we need some
appreciation of its conception of “prior” opinions and its theory of learning. We
begin with the latter.

4. THE BAYESIAN THEORY OF LEARNING

Bayesians see learning as a process of belief revision in which “prior” beliefs are
replaced by “posterior” beliefs that incorporate new information. For ease of ex-
position we will assume an ideal learner whose prior and posterior opinions can
be represented by probability functions ¢ and c,. Bayesian learning proceeds in
two stages: one causal, one inferential. First, the person has a learning experience
in which perception, intuition, memory, or some other noninferential causal pro-
cess immediately alters some subset of her beliefs. Second, she uses information
acquired via this experience, in conjunction with other things she knows, to revise
the rest of her opinions. We will focus on experiences whose sole immediate effect
is to alter the person’s level of confidence in a proposition E* so that ¢, is
constrained to be such that ¢,(E) # ¢,(E). Every other change in the learner’s
posterior beliefs is due to a (probabilistic) inference from this basic one. ’I:he
challenge is to explain how her prior opinions can justify the choice of a specific
posterior ¢, from among the many that might meet the constraint.

In the simplest learning experiences, where the person becomes certain of E,
Bayesians advocate the following rule of belief revision:

Simple Conditioning. If a person with a “prior” such that 0 < ¢,(E) <1
undergoes a learning experience whose only immediate effect is to raise E's
probability to one, then ¢,(H) = ¢,(H/E) for any proposition H.

The effect of this is to set probabilities of hypotheses inconsistent with E to zero
and to increase probabilities of hypotheses that entail E uniformly by a factor of

1/¢,(E).

Simple conditioning requires a learner to become certain of E’s truth. As
Richard Jeffrey (1983, 164-69) has long argued, however, our evidence is typically
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too vague and imprecise to justify such “dogmatism.” More realistic learning
experiences are modeled by the following rule:

Jeffrey Conditioning. If a person with a “prior” such that 0 < ¢,(E) <1
undergoes a learning experience whose only immediate effect is to set ¢,(E)
= g, then ¢,(H) = q X ¢,(H/E) + (1—~q) Xc¢,(H/—E) for any proposition H.

This holds probabilities conditional on E and —E fixed, so that ¢,(H/E) = c,(H/
E) and ¢,(H/—E) = ¢,(H/—E), and it multiplies the probability of each hypothesis
that entails E (or —E) by a factor of g/c,(E) (or (1—q)/c,(—E)). Note that Jeffrey
Conditioning reduces to Simple Conditioning when q = 1.

Many justifications have been offered for the conditioning rules. The most
contentious are the diachronic Dutch book arguments. Like their synchronic coun-
terparts, these are pragmatic arguments designed to show that failing to condition
on one’s evidence can lead to practical incoherence. Here, though, the self-
defeating choices are made at different times. David Lewis offered a Dutch book
rationale for Simple Conditioning, Brad Armendt generalized it to cover Jeffrey
Conditioning, and Bas van Fraassen and Michael Goldstein each showed that both
forms of conditioning are instances of the Reflection Principle, which also has a
Dutch book rationale.”” Our discussion will focus on Reflection since it is the
most general principle of the bunch.

Reflection requires a person’s degree of belief in H at time t, to agree with
her t,-expectation of her time #, degree of belief in H. If “c,(H) = x” says the
person’s degree of belief in H at time ¢, is x, then Reflection requires that ¢,(H/
¢,(H) = x) = x and therefore that

c(H) = X, Co(fl(H) =x) X x%

This captures what is at issue in diachronic Dutch Book arguments, since, as van
Fraassen and Goldstein each showed, a person is invulnerable to diachronic Dutch
book if and only if she satisfies Reflection.

As many authors have recognized, however, there is nothing irrational, per
se, about violating Reflection or leaving oneself open to diachronic Dutch books.
In fact, practical rationality requires it when one undergoes an antilearning expe-
rience, that is, a belief change one takes to be unreliable. Suppose a miserly ex-
pected utility maximizer has inadvertently ingested a drug that will soon make
her highly confident of the claim, H, that she will be able to recite the Gettysburg
Address backward on command. She now regards H as unlikely, and does not
take the fact that she will soon believe it to be any indication of its truth. What
should she do? Since she knows that she will soon pay close to $1 to buy the
wager [$1 if H, $o else], the best way for her to offset her future idiocy is to hedge
her bets now by selling the wager for as much as she can get above its current
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(low) fair price. Even though she is sure to lose money in the aggregate, this is
perfectly rational. The irrational thing would be to allow the beliefs of her future,
idiot self to guide her present actions.

It is irrational to violate Reflection only when one regards the belief change
one is about to undergo as a genuine Jearning experience that is likely to improve
the overall accuracy of one’s beliefs. But, what is it to regard a belief change as a
learning experience? As Brian Skyrms (1993) has argued, Reflection itself provides
the answer. A person sees a prospective change in her belief about H as increasing
accuracy exactly if she sees her future degree of belief in H as a reliable indicator
of E's truth-value. When the evidential connection is perfect, her beliefs will
satisfy ¢(H/c,(H) = x) = x for all x. So, by definition, a person regards a belief
change as a genuine learning experience only if it satisfies Reflection. This makes
Reflection (or invulnerability to diachronic Dutch books) entirely useless as a
justification for the conditioning rules. Indeed, when properly formulated (as here),
these rules take the shift from ¢,(E) to ¢,(E) at face value as a learning experience.

A further problem with diachronic Dutch book arguments is their pragmatic
character. Even if conditioning pays, antipragmatists will still wonder whether it
leaves learners better off from a purely epistemic perspective. One can argue that
it does by showing that conditioning rules are “epistemically conservative” in that
they produce a posterior that departs minimally from the prior while taking the
evidence into account. The best results along these lines are due to Persi Diaconis
and Sandy Zabell (1982), who show that, on a variety of ways of measuring dif-
ferences between probabilities, simple and Jeffrey conditioning uniquely minimize
change subject to the constraints imposed by experience. A more general ap-
proach, still grounded in epistemic conservatism, justifies the conditioning rules
by showing that they alone keep central features of the prior intact. Consider the

property

Ordinal Invariance. If ¢,(E) > o then, for any hypotheses H and H*, ¢,(H &
E) > ¢(H* & E) iff ¢,(H & E) > ¢,(H* & E).

This requires a person who has a learning experience involving E to retain her
views about the comparative probability of propositions that entail E. It can be
shown that only the conditioning rules generally meet this condition.* Thus, we
will have a sound epistemic rationale for conditioning if we can make a convincing
case for Ordinal Invariance.

The Discrimination Principle of section 3 gives us the resources to do so. It
entails that a person who initially has more total evidence for H & E than for H*
& E will still have more total evidence for H & E after undergoing a learning
experience that alters E’s probability. As already noted, a rational believer will
invest more prior (posterior) confidence in H & E than in H* & E just in case
her total evidence for the former at t, (at t,) exceeds her total evidence for the
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latter. It follows directly from Discrimination that ¢, will rank H & E above H*
& E if and only if ¢, does. Hence, Discrimination implies Ordinal Invariance.
Simple and Jeffrey conditioning are thus justified as the only belief revision rules
that are consistent with this most basic tenet of the Bayesian theory of evidence.

5. PRIOR PROBABILITIES:
THE CHARGE OF SUBJECTIVISM

The most persistent objection to Bayesianism is that it engenders an untenable
subjectivism in which all manner of preposterous beliefs and ludicrous inferences
are immunized from criticism. If the constraints on rational opinion begin and
end with the laws of probability and the conditioning rules, then Bayesianism
allows a person to draw almost any conclusion on the basis of almost any evidence
as long as she starts out with suitable prior beliefs. There are, for example, prob-
abilistically consistent priors that make the existence of statues on Easter Island
evidence for the conclusion that Martians built the Pyramids, or that count
peyote-induced belief changes as learning experiences. By allowing such absurdi-
ties, Bayesianism seems to say that what it makes sense to believe, and what counts
as evidence for what, is “all just a matter of opinion.” In Bayesian epistemology,
it appears, just about anything goes. '

Bayesians have addressed this charge in a variety of ways. “Personalists,” like
Savage and de Finetti, bite the bullet and deny that there are any constraints on
beliefs that outrun the laws of probability and the conditioning rules. They seek
to blunt the force of the “anything goes” objection by arguing that the effect of
a person’s priors will tend to diminish as she acquires increasingly more evidence
about the world. Here is a famous statement of the view: “If observations are
precise . . . then the form and properties of the prior distribution have negligible
influence on the posterior distribution. From a practical point of view, then, the
untrammeled subjectivity of opinion. .. ceases to apply as soon as much data
becomes available. More generally, two people with widely divergent prior opin-
ions but reasonably open minds will be forced into arbitrarily close agreement
about future observations by a sufficient amount of data.”! This “merger of opin-
ion” is what stands in for objectivity in the personalist picture: objectivity is
intersubjective agreement in the long run.

The theoretical basis of such claims is found in a set of mathematical results,
the “washing out” theorems, which show that people who begin with different
priors will tend to reach consensus as they acquire increasingly more data. Sup-
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pose we have two subjects with priors ¢ and ¢* that assign H an intermediate
probability. Imagine further that there is an infinite sequence of evidence state-
ments {E,, E,, E,, ...} such that for each j:

(a) c and c* assign each finite data sequence D; = * E, & * E, &... &
+ E; an intermediate probability.

(b) At time-j each subject has an experience that sets E’s probability to 1 or
to o.

(c) Both subjects regard these as learning experiences.

(d) Both subjects condition on the evidence they receive, so that for each j
and each finite data sequence D, ¢(H) = ¢(H/D;) and ¢*(H) = c¢*(H/
D).

(a)—(d) entail that the probabilities each subject assigns to H at successive times
form a martingale sequence in which each term is the expected value of its suc-
cessor, so that ¢(H) = X, (¢, (H) = x) X x. The Doob Martingale Convergence
Theorem then entails that, with probability one, ¢(H) and ¢*(H) each converge
to a definite limit.*

Establishing that these limits coincide requires an additional assumption.
There are two kinds of conditions that will do the job. First, the evidence can be
so informative that it forces any rational believer to the same conclusion about
H. Either of the following clauses will accomplish this:

(e) Each possible data sequence = E, & + E, & * E,, .. .entails H or
—H.
(¢*) Each data sequence determines an objective probability for H.

On the basis of Coherence alone, (e) guarantees that ¢,(H) and ¢;*(H) will converge
to H’s truth-value (as specified by the data). Similarly, if we combine (e*) with
what David Lewis (1980) calls the “Principal Principle,” which requires rational
believers to align their degrees of belief with known objective probabilities,* then
¢(H) and ¢*(H) will converge to H’s objective probability (as specified by the
data).

For purposes of allaying fears about subjectivism, these ways of obtaining
agreement in the limit are wholly impotent. Priors only get “washed out” because
the data is so incredibly informative that, as a matter or logic, it makes each
subject’s antecedent beliefs irrelevant to her final view. Indeed, a “washing out”
result that uses (e) (or [e*]) amounts to little more than the claim that two
subjects will come to agree about H's truth-value (or probability) if each ulti-
mately learns H’s truth-value (or its objective probability). If all learning situations
were like this, there would be no need for prior probabilities at all.

To obtain washing-out theorems that respond to subjectivist worries, we must
imagine that nothing in the laws of logic or probability forces subjects to assign
a specific probability to H conditional on each data sequence. We must, rather,
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derive joint convergence from commonalities among the priors alone. One way
to do this, pioneered by Savage ([1954] 1972, 46—50), is to have subjects agree that
the evidence statements are statistically independent and identically distributed con-
ditional on H and —H.

(e**) For some constants x and y and all j and k, ¢(E/H) = «(E/H & E)
= x and ¢(E,/—H) = c(E/—H & E) = y. The same holds with c re-
placed by c¢*.

Savage showed that under these conditions ¢,(H) and ¢*(H) converge to the same
value with probability one (according to both ¢ and ¢*).

There is less here than meets the eye. (e**) requires an exceptional amount
of initial consensus between the parties. In effect, both must start out treating H
like a chance hypotheses, so that H = “x is the objective probability of every E,”
and each must see the E; as describing independent trials of a chance process.
While this does happen in rare, well-behaved cases (e.g., coin flipping), it typically
fails. Once again, the assumptions needed to ensure convergence to a common
value severely limit the theorem’s value as a response to the charge of subjectivism.

Indeed, it is hard to see how any result based on (a)—(d) can rebut subjec-
tivism. These assumptions require substantial initial agreement among the sub-
jects. (a) asks them to agree about which data sequences have a chance of oc-
curring. (c) requires them to see the belief changes they are about to undergo as
learning experiences. If they disagree about these things, they will not tend toward
consensus as the evidence accumulates simply because they will not agree about
what counts as “the evidence.” The basic problem with using “washing out” results
to refute subjectivism is simple: no agreement in, no agreement out!

Another approach, championed by so-called objective Bayesians, seeks to avoid
subjectivism by restricting prior probabilities. The best-developed view of this sort
is that of the physicist E. T. Jaynes, who writes, “The most elementary requirement
of consistency demands that two persons with the same relevant prior information
should assign the same prior probabilities. Personalistic doctrine makes no at-
tempt to meet this requirement.”® According to Jaynes, any well-posed problem
of inductive inference is defined by certain objective constraints, often deducible
from physical theory or symmetry principles, which fix expected values for various
quantities. An acceptable prior must yield the required expectations. If the ex-
pected value of the toss of a die is constrained to be 3.5, say, then c(1) X 1 + ¢(2)
X 2+ ...+ c1) X 6 = 3.5 will hold for every acceptable prior c. To choose the
correct prior from among the many that are acceptable, Jaynes advocates entropy
maximization. Relative to a partition {X,, X,, ..., X;} of mutually exclusive, col-
lectively exhaustive propositions, the entropy in a probability ¢ is defined as

Entropy(c) = Z; (X)) X log(c(X))).
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Entropy(c) measures the inverse of the amount of information (about the X) that
¢ encapsulates. For the die above it is easy to show that the uniform distribution,
in which each side comes up with probability 1/6, uniquely maximizes entropy.
By choosing the (unique) probability that maximizes entropy, Jaynes argues, we
respect the constraints but otherwise make the fewest possible additional assump-
tions.

While maximizing entropy is a fine method for finding 2 probability that
meets specific constraints, the idea that it “objectifies” Bayesianism is illusory. As
Colin Howson and Peter Urbach (1989, 289) point out, the choice of one system
of constraints rather than another is a subjective matter par excellence: “No prior
probability . . . expresses merely the available factual data; it inevitably expresses
some sort of opinion about the possibilities consistent with the data. Even a
uniform probability distribution is [uniform] only relative to some partition of
these possibilities: we can always find another with respect to which the distri-
bution is as biased as you like—or don’t like. Jaynes’s objective priors do not
exist.” Even if we all agree that the expected value of a toss of a die is 3.5, we will
be justified in settling on the uniform distribution only if we also agree that this
is our only relevant piece of information. This is a subjective judgment, as is any
other of the form “precisely these constraints characterize our knowledge.” If you
think that odd tosses are more likely than even ones, and I think the reverse, then
we would both be wrong to ignore our beliefs and settle on the uniform distri-
bution. We might agree with Jaynes that “consistency demands that two persons
with the same relevant prior information should assign the same prior probabil-
ities,” but we will disagree about which “prior information” counts as relevant
and even about what this information is. Appealing to a physical theory will not
help matters unless we are already convinced of it, which, again, is a matter for
our respective background beliefs. Jaynes’s program provides no answer to the
charge of subjectivism.

Perhaps Bayesians should admit that there is more to epistemic rationality
than the laws of probability and the conditioning rules. These provide an inter-
nalist logic of rational belief: they tell us whether a person’s beliefs cohere with
one another, what she counts as evidence for what, and how she should revise
her opinions in light of what she regards as learning experiences. The whole
Bayesian apparatus, in other words, is appropriate for describing and criticizing
a person’s own reasons for believing what she does. :

Any internalist view is going to suffer from “garbage in, garbage out” prob-
lems. If a person starts out with inaccurate priors that assign low probabilities to
truths and high ones to falsehoods, or if she has false views about which belief
changes are learning experiences, then her subsequent beliefs will be inaccurate
and unreliable as well. Sophisticated Bayesians should concede this and grant that
there are further externalist principles of epistemic rationality that can be used to
evaluate opinions. These principles will not assess a person’s beliefs on the basis
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of her own view of things—that is, they will not take her prior opinions or her
views about learning at face value as the personalists do. Rather, they will consider
the actual accuracy of her priors and the actual reliability of the processes she
treats as learning experiences. Ramsey saw this right from the start. In addition
to being concerned with rational belief, which answers to internalist Bayesian
norms, he sought a theory of reasonable belief that would assess a person’s doxastic
attitudes and habits on the basis of the actual accuracy of the beliefs they gen-
erate.* Personalist Bayesians have largely ignored this aspect of Ramsey’s thought,
but they would be wise to give it more heed.

One should not think of these externalist approaches replacing Bayesianism.
A complete account of epistemic rationality will necessarily involve both inter-
nalist considerations that concern a believer’s reasons and externalist considera-
tions having to do with the accuracy of her opinions and the reliability of her
belief-forming processes. While Bayesians have little to say about the latter issues,
they offer us a detailed, systematic, and exceedingly plausible account of the for-
mer. For all its shortcomings, Bayesianism remains without peer as a theory of

epistemic reasons and reasoning. As long as we use it for this purpose it will serve
us well.

NOTES

1. Classic sources are Ramsey 1931, de Finetti (1937) 1964, and Savage (1954) 1972.

2. The strength of a belief should not be confused with any feeling of conviction. As
Ramsey (1932, 169) noted, the beliefs we hold most strongly are often associated with no
feelings whatever. Moreover, people who feel convinced of propositions sometimes rea-
son and act as if they are false. Nor is a graded belief a categorical belief about an objec-
tive probability. A person can be certain that the coin he is about to toss is either two-
headed or two-tailed, and yet be maximally uncertain about which possibility obtains.
He then believes “the coin will come up heads” to degree 1/2 even though he knows
that 1/2 is not its objective probability. In general, a person’s degree of confidence in a
proposition is her subjective expectation of its objective probability.

3. See Rényi 1955, Harper 1976, Spohn 1986, McGee 1994, van Fraassen 1995, and
Hammond 1994.

4. See Levi 1980, 85—91, and Kaplan 1996, 27-31.

5. P must also be countably additive. The issues surrounding countable additivity
, a;e too involved to pursue here. See Seidenfeld and Schervish 1983 and Kaplan 1996, 32—

36.
6. Conditioning entails that P(X/Y) = P(X & Y) + P(Y) when P(Y) > o.
7. Bayes (1764) 1958. .
8. See Osherson 1995 and Shafir and Tversky 1995.
9. Ramsey is especially lucid on this point in 1931, 173.
10. It need not be any part of Bayesianism that acting on the basis of habits, emo-
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tions, and so on is irrational. If an act bears the right relationship to the actor’s beliefs
and desires, then it is rational however it is caused. When emotions or habits tend to
lead (nonaccidentally) to rational actions, Bayesians should encourage emotional or ha-
bitual decision making.

11. The value of ¢(X) is independent of the particular choice of a and b. For any a*
> b*, the fair price f* of W* = [$a* if X, $b* else] will be such that ¢(X) = (f~b*) +
(a*-b*).

12. Conditional beliefs are reflected in fair prices of bets that get “called oft” when
the condition fail to obtain.

13. Some commentators incorrectly portray the “package principle” as an added,
hidden premise in the DBA. Actually, it follows from the EU-thesis and (a)-(c).

14. See Kaplan 1996, 23-31; Jeffrey 1992, 82—85; Joyce 1999, 43—45-

15. The proof of this claim, which is beyond the scope of this paper, relies on tech-
nical results found in Kraft, Pratt, and Seidenberg 1959 and Scott 1964.

16. Most Bayesians regard the DBA as a “toy model” whose rhetorical purpose is to
point beyond itself to these more serious representation results. See Skyrms 1984b, Jef-
frey 1992, Maher 1993, Kaplan 1996, and Joyce 1999, among others. This has always been
the prevailing wisdom among Bayesians. Indeed, Ramsey only mentions the Dutch Book
Theorem in passing after having proved a representation theorem.

17. Despite this terminology, Savage’s acts are not best understood as events the
agent can directly control. See Joyce 1999, 61-62, and 107.

18. To establish uniqueness Savage imposed a variety of constraints (like Trichot-
omy and Wagers) that require extremely rich systems of preferences. Most Bayesians
now agree that these richness conditions far exceed what is demanded by practical ration-
ality. Accordingly, Savage’s result is best thought of as guaranteeing the existence of a
(large) family of probability/utility pairs, all of whose associated expectations represent
the agent’s preferences.

19. See Broome 1991 and Maher 1993 for overviews.

0. For similar worries, see Rosenkrantz 1981, 214; Joyce 1998, 584—86; and Christen-
sen 2001, 356—64.

21. Skyrms claims, rightly, that Ramsey too saw this as the deep flaw that incoher-
ent preferences serve to indicate. Armendt (1993, 3) defends a similar view.

22. See Tversky and Kahneman 1981.

23. See Joyce 1998, 586.

24. See Howson and Utrbach 1989, Christensen 1996, Hellman 1997.

25. Christensen (2001) seeks to reinterpret representation theorems in an analogous
way.

26. Compare Maher 1997.

27. See van Fraassen 1983 and Shimony 1988.

»8. For useful discussion of the calibration index, see Murphy 1973.

29. See Joyce 1998, 494-95. For other problems, see Seidenfeld 198s.

30. Maher (2002) expresses reservations about Convexity, and champions a noncon-
vex accuracy gauge.

31. While Bayesians rarely discuss total evidence, their theory of incremental evi-
dence makes sense only when it is based on an account of total evidence like the one
given here.

32. For useful discussion, see Farman 1992, chap. 3.
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33 OtlTer asPects of the problem concern how to characterize the knowledge of
logical relationships within the Bayesian framework, and how to handle genuinely novel
hypotheses.-See Joyce 1999, 204, and Earman 1992, 12035, for relevant discussion.

34. This runs contrary to the line taken in Eells 2000.
5 osgdeudes are ¢(H) + c(—H), and its odds conditional on E are c(H/E) + c¢(—H/

. s talk can be translated into probability talk using the mappin =
c(H) = odd

+ (1 + odds(H)). ’ pping o(H) = odd(ED)

36. More complicated experiences might alter her levels of confidence in each ele-
n.lent of a set of statements, or alter the conditional probability of some proposition
given another, or directly fix the value of a random variable.

37. Lewis’s result is reported and discussed in Teller 1973. Armendt 1980, van Fraas-
sen 1984, and Goldstein 1983 contain the generalizations.

. 38. As Yan Fraassen notes, it is important to understand that ¢,(H) is a nonrigid
designator since the identity ¢,(H) = x is otherwise trivial. )

39. Levi 1987; Christensen 1991; Maher 1993, 106—20.

40. Joyce 1999, 195-96.

41. Edwards, Lindeman, and Savage, 1963, 201. Also, see Suppes 1966, 204.

42. *£E may be E or —E.

43. Doaob 1971.

44. Of course, personalists, like de Finetti and Savage, would deny that objective
probabilities exist. ,

45. Jaynes 1968, 53. See also Jaynes 1994.
46. See Ramsey 1931, 193—96.



